Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.30.474519

ABSTRACT

Despite the efficacy of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 5 million individuals worldwide and continues to spread in countries where the vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the activation status and requirement of the master UPR sensor IRE1 kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and the murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1 as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1 whereby it autophosphorylates, but its RNase fails to splice XBP1. Moreover, IRE1 was dispensable for optimal replication in human cells for all coronaviruses tested. Our findings demonstrate that IRE1 activation status differs upon infection with distinct betacoronaviruses and is not essential for efficient replication of any of them. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1 through an unknown mechanism, perhaps as a strategy to eliminate detection by the host immune system.


Subject(s)
Coronavirus Infections , Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.432967

ABSTRACT

The rapid spread of COVID-19 underscores the need for new treatments. Here we report that cannabidiol (CBD), a compound produced by the cannabis plant, inhibits SARS-CoV-2 infection. CBD and its metabolite, 7-OH-CBD, but not congeneric cannabinoids, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after cellular infection, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD induces interferon expression and up-regulates its antiviral signaling pathway. A cohort of human patients previously taking CBD had significantly lower SARS-CoV-2 infection incidence of up to an order of magnitude relative to matched pairs or the general population. This study highlights CBD, and its active metabolite, 7-OH-CBD, as potential preventative agents and therapeutic treatments for SARS-CoV-2 at early stages of infection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL